Deletion of the L-type calcium channel Ca(V) 1.3 but not Ca(V) 1.2 results in a diminished sAHP in mouse CA1 pyramidal neurons.

نویسندگان

  • Amy E Gamelli
  • Brandon C McKinney
  • Jessica A White
  • Geoffrey G Murphy
چکیده

Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium-dependent postburst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age-related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium-activated potassium currents; however, the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage-gated L-type calcium channels (L-VGCCs) contributes to the generation of the AHP. Two L-VGCC subtypes are predominately expressed in the hippocampus, Ca(V) 1.2 and Ca(V) 1.3; however, it is not known which L-VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit-specific agonists or antagonists. Therefore, using mice in which the gene encoding Ca(V) 1.2 or Ca(V) 1.3 was deleted, we sought to determine the impact of alterations in levels of these two L-VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from Ca(V) 1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from Ca(V) 1.3 knockout mice as compared with neurons from wild-type controls. A significant reduction in the amplitude of the AHP was also seen at the 1 s time point in neurons from Ca(V) 1.3 knockout mice as compared with those from controls. Reductions in both the area and 1 s amplitude suggest the involvement of calcium influx via Ca(V) 1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of Ca(V) 1.3, but not Ca(V) 1.2, significantly impacts the generation of the sAHP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatic colocalization of rat SK1 and D class (Ca(v)1.2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons.

In hippocampal neurons, the firing of a train of action potentials is terminated by generation of the slow afterhyperpolarization (AHP). Recordings from hippocampal slices have shown that the slow AHP likely results from the activation of small-conductance calcium-activated potassium (SK) channels by calcium (Ca(2+)) entry through L-type Ca(2+) channels. However, the relative localization of th...

متن کامل

Mechanisms underlying activation of the slow AHP in rat hippocampal neurons.

The firing of a train of action potentials in hippocampal pyramidal neurons is terminated by an afterhyperpolarization (AHP) that displays two main components; the medium AHP (I(mAHP)), lasting a few hundred milliseconds and the slow AHP (I(sAHP)), that has a duration of several seconds. It is unclear how much of I(mAHP) is dependent on the entry of calcium ions (Ca(2+)), whereas it is accepted...

متن کامل

Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: role for ryanodine receptor mediated calcium signaling.

A decrease in the excitability of CA1 pyramidal neurons contributes to the age related decrease in hippocampal function and memory decline. Decreased neuronal excitability in aged neurons can be observed as an increase in the Ca(2+)- activated K(+)- mediated post burst afterhyperpolarization (AHP). In this study, we demonstrate that the slow component of AHP (sAHP) in aged CA1 neurons (aged-sAH...

متن کامل

calcium stores underlie enhanced afterhyperpolarization of aged neurons : role 2 for ryanodine receptor mediated calcium signaling

40 A decrease in the excitability of CA1 pyramidal neurons contributes to the age related 41 decrease in hippocampal function and memory decline. Decreased neuronal excitability in aged 42 neurons can be observed as an increase in the Caactivated Kmediated post burst 43 afterhyperpolarization (AHP). In this study, we demonstrate that the slow component of AHP 44 (sAHP) in aged CA1 neurons (aged...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2011